Problem 180

Rational zeros of a function of three variables.

For any integer `n`, consider the three functions

`f`_{1,n}(`x`,`y`,`z`) = `x`^{n+1} + `y`^{n+1}`z`^{n+1}`f`_{2,n}(`x`,`y`,`z`) = (`xy` + `yz` + `zx`)*(`x`^{n-1} + `y`^{n-1}`z`^{n-1})`f`_{3,n}(`x`,`y`,`z`) = `xyz`*(`x`^{n-2} + `y`^{n-2}`z`^{n-2})

and their combination

`f`_{n}(`x`,`y`,`z`) = `f`_{1,n}(`x`,`y`,`z`) + `f`_{2,n}(`x`,`y`,`z`) `f`_{3,n}(`x`,`y`,`z`)

We call (`x`,`y`,`z`) a golden triple of order `k` if `x`, `y`, and `z` are all rational numbers of the form `a` / `b` with

0 `a` `b` `k` and there is (at least) one integer `n`, so that `f`_{n}(`x`,`y`,`z`) = 0.

Let `s`(`x`,`y`,`z`) = `x` + `y` + `z`.

Let `t` = `u` / `v` be the sum of all distinct `s`(`x`,`y`,`z`) for all golden triples (`x`,`y`,`z`) of order 35.

All the `s`(`x`,`y`,`z`) and `t` must be in reduced form.

Find `u` + `v`.

**
These problems are part of
Project Euler
and are licensed under
CC BY-NC-SA 2.0 UK
**