Problem 21

Amicable numbers

Let d(*n*) be defined as the sum of proper divisors of *n* (numbers less than *n* which divide evenly into *n*).

If d(*a*) = *b* and d(*b*) = *a*, where *a* *b*, then *a* and *b* are an amicable pair and each of *a* and *b* are called amicable numbers.

For example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 44, 55 and 110; therefore d(220) = 284. The proper divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.

Evaluate the sum of all the amicable numbers under 10000.

**
These problems are part of
Project Euler
and are licensed under
CC BY-NC-SA 2.0 UK
**